Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Mixed-chalcogenide doublebutterfly complex $\left[\left\{(\mathrm{CO})_{6} \mathrm{Fe}_{2} \mathrm{SSe}_{2^{-}}\right.\right.$ $\{\mu-\mathbf{C}(\mathbf{H}) — \mathbf{C}(\mathbf{H})\}]$

Kaliyamoorthy Panneerselvam, ${ }^{\text {a }}$ Tian-Huey Lu, ${ }^{\text {a* }}$ Shu-Fang Tung, ${ }^{\text {b }}$ Aswini K. Dash ${ }^{\text {c,d }}$ and Pradeep Mathur ${ }^{\text {d }}$
${ }^{\text {a }}$ Department of Physics, National Tsing Hua University, Hsinchu, Taiwan 300, Republic of China, ${ }^{\mathbf{b}}$ Southern Instrument Center, National Cheng Kung University, Tainan, Taiwan 701, Republic of China, ${ }^{\text {c }}$ Department of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel, and d Department of Chemistry, Indian Institute of Technology, Powai, Mumbai 400 076, India
Correspondence e-mail: thlu@phys.nthu.edu.tw

Received 2 September 1999
Accepted 18 January 2000
Bubbling acetylene gas slowly through a methanol solution of $\left[(\mathrm{CO})_{6} \mathrm{Fe}_{2}\{\mu\right.$-SSe $\left.\}\right]$ containing sodium acetate for 48 h at room temperature yields the double-butterfly complex μ-[ethane-1,1,2,2-tetra(selenido/sulfido)]bis[hexacarbonyldiiron($\mathrm{Fe}-$ $\mathrm{Fe})]$, $\left[\mathrm{Fe}_{4}\left(\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{Se} 2\right)(\mathrm{CO})_{12}\right]$. The molecular structure was established by single-crystal X-ray diffraction techniques. The structure consists of two $\mathrm{Fe}_{2} \mathrm{SSe}$ butterfly units linked to each other through a bridging $\mathrm{HC}-\mathrm{CH}$ group. The molecule has twofold symmetry and the two Fe atoms have distorted octahedral geometries.

Comment

Bonding and reactivity studies of alkynes attached to metal centres are of considerable interest because of the potential of the coordinated alkynes to be transformed into useful organic species (Katz \& Hacker, 1985). In contrast to the large number of reports on the different bonding modes between alkynes and transition metals (Sappa et al., 1983), studies of complexes in which alkynes are attached to main group elements are more recent and relatively few (Mathur, 1997). Recent successes in the area of incorporating group 16 elements into transition metal carbonyl complexes have evoked interest in studying the interaction of alkynes with these ligands. The facile addition of phenylacetylene to $(\mathrm{CO})_{6} \mathrm{Fe}_{2}\left(\mu-\mathrm{Se}_{2}\right)$ and $(\mathrm{CO})_{6} \mathrm{Fe}_{2}\left(\mu-E E^{\prime}\right)$ occurs at room temperature to form $(\mathrm{CO})_{6} \mathrm{Fe}_{2}\{\mu-\mathrm{SeC}(\mathrm{H})=\mathrm{C}(\mathrm{Ph}) \mathrm{Se}\}$ and $(\mathrm{CO})_{6} \mathrm{Fe}_{2}\{\mu-E \mathrm{C}(\mathrm{H})=$ $\left.\mathrm{C}(\mathrm{Ph}) E^{\prime}\right\}$, respectively, whereas $(\mathrm{CO})_{6} \mathrm{Fe}_{2}\left(\mu-\mathrm{S}_{2}\right)$ and $(\mathrm{CO})_{6} \mathrm{Fe}_{2^{-}}$ ($\mu-\mathrm{Te}_{2}$) are inert towards such addition under similar reaction conditions (Mathur, Hossain et al., 1995). In (CO) ${ }_{6} \mathrm{Fe}_{2}\{\mu-$ $\mathrm{SeC}(\mathrm{H})=\mathrm{C}(\mathrm{Ph}) \mathrm{Se}\}$, the reactive Se sites are blocked, and addition of $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}$ (Mathur, Hossain, Das \& Sinha, 1993) and $(\mathrm{CO})_{6} \mathrm{Fe}_{2}\left(\mu-\mathrm{Se}_{2}\right)$ (Mathur \& Hossain, 1993) occurs readily across the $\mathrm{C}=\mathrm{C}$ bond to yield products in which the
acetylenic bond is reduced. Similarly, addition of organometallic groups across the $\mathrm{Fe}-\mathrm{Fe}$ bond can be carried out thermolytically, as in the formation of Se-bridged mixed-metal clusters $\mathrm{Cp}_{2} \mathrm{Mo}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}\left(\mu_{4}-\mathrm{Se}\right)\left(\mu_{3}-\mathrm{Se}\right)_{2}$ (Mathur, Hossain \& Rheingold, 1993). We report here the structural characterization of a mixed-chalcogenide double-butterfly complex, (I), obtained from the reaction of $(\mathrm{CO})_{6} \mathrm{Fe}_{2}(\mu-\mathrm{SSe})$ with acetylene. The starting material provides an important probe to the active metallic centre in enzymatic processes (Pombeiro \& Richards, 1990).

In the structure of (I), the Se and S positions are disordered with equal occupancy (50%). The molecule contains a twofold axis bisecting the $\mathrm{C} 7-\mathrm{C} 7^{\prime}$ bond. The structure can be described as two $\mathrm{Fe}_{2} \mathrm{SSe}$ core units linked to each other through a bridging $\mathrm{HC}-\mathrm{CH}$ group. As a result of the acetylene addition to the $\mathrm{Fe}_{2} \mathrm{SSe}$ tetrahedron, the acetylenic bond is reduced to beyond an olefinic bond order. The C7$C 7^{\prime}$ bond distance of $1.511(16) \AA$ in $\left[\left\{(\mathrm{CO})_{6} \mathrm{Fe}_{2} \mathrm{SSe}_{2}\{\mu\right.\right.$ $\mathrm{C}(\mathrm{H}) \mathrm{C}(\mathrm{H})\}]$ is similar to that observed in $\left[\left\{(\mathrm{CO})_{6} \mathrm{Fe}_{2} \mathrm{SSe}_{2}\{\mu\right.\right.$ $\mathrm{C}(\mathrm{H}) \mathrm{C}(\mathrm{Ph})\}]$ [1.53(1) \AA; Mathur, Dash et al., 1996], whereas it is longer than the corresponding bond lengths of 1.48 (1) \AA in $\left[\left\{(\mathrm{CO})_{6} \mathrm{Fe}_{2} \mathrm{Se}_{2}\right\}_{2}\{\mu-\mathrm{C}(\mathrm{H}) \mathrm{C}(\mathrm{Ph})\}\right]$ (Mathur \& Hossain, 1993), 1.47 (1) \AA in $(\mathrm{CO}){ }_{6} \mathrm{Fe}_{2}\left\{\mu-\mathrm{Te}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Te}\right\}$ (Shieh \& Shieh, 1994), $1.494 \AA$ in $(\mathrm{CO})_{6} \mathrm{Fe}_{2}\left\{\mu-\mathrm{Se}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Se}\right\}$ (Mathur, Manimaran et al., 1996) and $1.42(1) \AA$ in $\left[(\mathrm{CO})_{6} \mathrm{Fe}_{2}\{\mu-\mathrm{SeC}(\mathrm{H}) \mathrm{C}(\mathrm{Ph})\}\right.$ $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}$] (Mathur, Hossain \& Rheingold, 1993). Each Fe atom has three CO groups bonded to it. The CO groups, the $\mu_{3}-\mathrm{S}$ ligand, the $\mu_{3}-\mathrm{Se}$ ligand and the $\mathrm{Fe}-\mathrm{Fe}$ bond define a distorted octahedral geometry around each Fe centre.

Figure 1
The structure of the title compound showing 30% probability displacement ellipsoids.

Experimental

In a typical procedure, acetylene gas was bubbled at a slow rate with constant stirring into a methanol solution (15 ml) containing freshly prepared $(\mathrm{CO})_{6} \mathrm{Fe}_{2}(\mu-\mathrm{SSe})(0.6 \mathrm{~g}, 1.53 \mathrm{mmol})$ (Mathur, Sekar et al., $1995)$ and anhydrous sodium acetate $(0.25 \mathrm{~g})$. The reaction was monitored by thin-layer chromatography (TLC) and terminated after 48 h at room temperature when all the $(\mathrm{CO})_{6} \mathrm{Fe}_{2}(\mu-\mathrm{SSe})$ had been consumed. Chromatographic work-up on silica-gel TLC plates using a $2: 3$ solution mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane yielded an orange band of $\left[\left\{(\mathrm{CO})_{6} \mathrm{Fe}_{2} \mathrm{SSe}\right\}_{2}\{\mu-\mathrm{C}(\mathrm{H}) \mathrm{C}(\mathrm{H})\}\right]$ in 28% yield. Rectangular-shaped air-stable crystals of $\left[\left\{(\mathrm{CO})_{6} \mathrm{Fe}_{2} \mathrm{SSe}_{2}\{\mu-\mathrm{C}(\mathrm{H}) \mathrm{C}(\mathrm{H})\}\right]\right.$ were obtained by slow evaporation from a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane solution at 263 K. IR data ($v, \mathrm{CH}_{2} \mathrm{Cl}_{2}$): $2080(s), 2068(s), 2042(s), 2009(s), 1997$ (m) cm^{-1}.

Crystal data

$\left[\mathrm{Fe}_{4}\left(\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{Se}_{2}\right)(\mathrm{CO})_{12}\right]$
$M_{r}=807.60$
Orthorhombic, Fdd2
$a=6.531$ (2) \AA 。
$b=44.759(4) \AA$
$c=16.224$ (2) \AA
$V=4742.6(16) \AA^{3}$
$Z=8$
$D_{x}=2.262 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Enraf-Nonius CAD-4 diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.323, T_{\text {max }}=0.488$
6094 measured reflections
2449 independent reflections
2188 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.108$
$S=1.095$
2449 reflections
154 parameters
H -atom parameters constrained

> Mo $K \alpha$ radiation
> Cell parameters from 25 \quad reflections
> $\theta=8.02-12.21^{\circ}$
> $\mu=5.701 \mathrm{~mm}^{-1}$
> $T=293(2) \mathrm{K}$
> Rectangular, orange $0.375 \times 0.134 \times 0.126 \mathrm{~mm}$

$$
\begin{aligned}
& R_{\text {int }}=0.034 \\
& \theta_{\max }=27.44^{\circ} \\
& h=-8 \rightarrow 0 \\
& k=-18 \rightarrow 58 \\
& l=-19 \rightarrow 21
\end{aligned}
$$

3 standard reflections frequency: 60 min intensity decay: 2%

$$
\begin{aligned}
& \begin{array}{l}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0473 P)^{2}\right. \\
\quad+78.9306 P] \\
\quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=0.48 \text { e } \AA^{-3} \\
\Delta \rho_{\min }=-0.48 \mathrm{e}^{-3}
\end{array}
\end{aligned}
$$

The data were originally collected in the monoclinic system and the structure solved in space group Cc. Additional symmetry was observed and the structure was found to transform to the orthorhombic system (space group Fdd2). The Se and S positions were found to be disordered, so their occupancies were fixed at 50% and they were constrained to have the same positional coordinates and the same anisotropic displacement parameters. The H atom was fixed geometrically and not refined. During refinement, the structure was treated as a racemic twin. The occupancy of the major component refined to a value of 0.515 .

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: $N R C V A X$ (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: $N R C V A X$; software used to prepare material for publication: SHELXL97.

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

$\mathrm{Se} 1 / \mathrm{S} 1-\mathrm{C} 7$	$1.916(7)$	$\mathrm{Se} 2 / \mathrm{S} 2-\mathrm{Fe} 1$	$2.343(1)$
$\mathrm{Se} 1 / \mathrm{S} 1-\mathrm{Fe} 1$	$2.334(2)$	$\mathrm{Se} 2 / \mathrm{S} 2-\mathrm{Fe} 2$	$2.364(1)$
$\mathrm{Se} 1 / \mathrm{S} 1-\mathrm{Fe} 2$	$2.346(2)$	$\mathrm{Fe} 1-\mathrm{Fe} 2$	$2.514(2)$
$\mathrm{Se} 2 / \mathrm{S} 2-\mathrm{C} 7^{\mathrm{i}}$	$1.931(8)$		
			$96.4(3)$
$\mathrm{C} 7-\mathrm{Se} 1 / \mathrm{S} 1-\mathrm{Fe} 1$	$103.2(2)$	$\mathrm{C} 1-\mathrm{Fe} 1-\mathrm{Fe} 2$	$57.8(1)$
$\mathrm{C} 7-\mathrm{Se} 1 / \mathrm{S} 1-\mathrm{Fe} 2$	$99.5(2)$	$\mathrm{Se} 1 / \mathrm{S} 1-\mathrm{Fe} 1-\mathrm{Fe} 2$	$58.1(1)$
$\mathrm{Fe} 1-\mathrm{Se} 1 / \mathrm{S} 1-\mathrm{Fe} 2$	$65.0(1)$	$\mathrm{Se} 2 / \mathrm{S} 2-\mathrm{Fe} 1-\mathrm{Fe} 2$	$91.0(4)$
$\mathrm{C} 7^{1}-\mathrm{Se} 2 / \mathrm{S} 2-\mathrm{Fe} 1$	$96.1(2)$	$\mathrm{C} 5-\mathrm{Fe} 2-\mathrm{C} 6$	$98.5(4)$
$\mathrm{C} 7^{\mathrm{i}}-\mathrm{Se} 2 / \mathrm{S} 2-\mathrm{Fe} 2$	$106.4(2)$	$\mathrm{C} 5-\mathrm{Fe} 2-\mathrm{C} 4$	$93.0(4)$
$\mathrm{Fe} 1-\mathrm{Se} 2 / \mathrm{S} 2-\mathrm{Fe} 2$	$64.5(1)$	$\mathrm{C} 6-\mathrm{Fe} 2-\mathrm{C} 4$	$90.0(3)$
$\mathrm{C} 2-\mathrm{Fe} 1-\mathrm{C} 3$	$99.0(5)$	$\mathrm{C} 5-\mathrm{Fe} 2-\mathrm{Se} 1 / \mathrm{S} 1$	$164.2(3)$
$\mathrm{C} 2-\mathrm{Fe} 1-\mathrm{C} 1$	$100.4(5)$	$\mathrm{C} 6-\mathrm{Fe} 2-\mathrm{Se} 1 / \mathrm{S} 1$	$102.4(3)$
$\mathrm{C} 3-\mathrm{Fe} 1-\mathrm{C} 1$	$91.2(5)$	$\mathrm{C} 4-\mathrm{Fe} 2-\mathrm{Se} 1 / \mathrm{S} 1$	$146.2(3)$
$\mathrm{C} 2-\mathrm{Fe} 1-\mathrm{Se} 1 / \mathrm{S} 1$	$106.4(4)$	$\mathrm{C} 5-\mathrm{Fe} 2-\mathrm{Se} 2 / \mathrm{S} 2$	$88.7(3)$
$\mathrm{C} 3-\mathrm{Fe} 1-\mathrm{Se} 1 / \mathrm{S} 1$	$88.9(3)$	$\mathrm{C} 6-\mathrm{Fe} 2-\mathrm{Se} 2 / \mathrm{S} 2$	$115.2(3)$
$\mathrm{C} 1-\mathrm{Fe} 1-\mathrm{Se} 1 / \mathrm{S} 1$	$152.9(3)$	$\mathrm{C} 4-\mathrm{Fe} 2-\mathrm{Se} 2 / \mathrm{S} 2$	$81.8(1)$
$\mathrm{C} 2-\mathrm{Fe} 1-\mathrm{Se} 2 / \mathrm{S} 2$	$96.0(3)$	$\mathrm{Se} 1 / \mathrm{S} 1-\mathrm{Fe} 2-\mathrm{Se} 2 / \mathrm{S} 2$	$90.8(3)$
$\mathrm{C} 3-\mathrm{Fe} 1-\mathrm{Se} 2 / \mathrm{S} 2$	$164.4(3)$	$\mathrm{C} 5-\mathrm{Fe} 2-\mathrm{Fe} 1$	$107.0(3)$
$\mathrm{C} 1-\mathrm{Fe} 1-\mathrm{Se} 2 / \mathrm{S} 2$	$90.5(3)$	$\mathrm{C} 6-\mathrm{Fe} 2-\mathrm{Fe} 1$	$157.8(3)$
$\mathrm{Se} 1 / \mathrm{S} 1-\mathrm{Fe} 1-\mathrm{Se} 2 / \mathrm{S} 2$	$82.6(1)$	$\mathrm{C} 4-\mathrm{Fe} 2-\mathrm{Fe} 1$	$57.3(1)$
$\mathrm{C} 2-\mathrm{Fe} 1-\mathrm{Fe} 2$	$149.3(3)$	$\mathrm{Se} 1 / \mathrm{S} 1-\mathrm{Fe} 2-\mathrm{Fe} 1$	$57.3(1)$
$\mathrm{C} 3-\mathrm{Fe} 1-\mathrm{Fe} 2$	$106.2(3)$	$\mathrm{Se} 2 / \mathrm{S} 2-\mathrm{Fe} 2-\mathrm{Fe} 1$	

Symmetry code: (i) $\frac{1}{2}-x, \frac{3}{2}-y, z$.

KP and THL thank the National Science Council ROC for support under grants NSC89-2811-M007-0018 and NSC89-2112-M007-043. AKD and PM are grateful to the Council of Scientific and Industrial Research, Government of India, for financial support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DA1109). Services for accessing these data are described at the back of the journal.

References

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-387.
Katz, T. J. \& Hacker, S. M. (1985). J. Am. Chem. Soc. 107, 2182-2183.
Mathur, P. (1997). Adv. Organomet. Chem. 41, 243-314.
Mathur, P., Dash, A. K., Hossain, M. M., Chen, Y.-S., Holt, E. M. \& Rao, S. N. (1996). J. Organomet. Chem. 526, 379-383.

Mathur, P. \& Hossain, M. M. (1993). Organometallics, 12, 2398-2400.
Mathur, P., Hossain, M. M., Das, K. \& Sinha, U. C. (1993). J. Chem. Soc. Chem. Comтии. pp. 46-48.
Mathur, P., Hossain, M. M. \& Rheingold, A. L. (1993). Organometallics, 12, 5029-5031.
Mathur, P., Hossain, M. M., Umbarkar, S. B., Satyanarayana, C. V. V., Tavale, S. S. \& Puranik, V. G. (1995). Organometallics, 14, 959-963.

Mathur, P., Manimaran, B., Trivedi, R., Hossain, M. M. \& Arabati, M. (1996). J. Organomet. Chem. 515, 155-162.
Mathur, P., Sekar, P., Satyanarayama, C. V. V. \& Mahon, M. F. (1995). Organometallics, 14, 2115-2118.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Pombeiro, A. J. L. \& Richards, R. L. (1990). Coord. Chem. Rev. 104, 13-38.
Sappa, E., Tiripicchio, A. \& Braunstein, P. (1983). Chem. Rev. 83, 203-239.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. Release 97-1. University of Göttingen, Germany.
Shieh, M. \& Shieh, M.-H. (1994). Organometallics, 13, 920-924.

